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Abstract—In this paper (spot) electricity prices are analyzed.
Fluctuations in electricity prices - as they come about on the new
energy markets - turn out to be deterministic to a large extent.
This is very different from (spot) market prices for stocks,
currencies, interest or common commodities, like wheat or oil,
which are best treated as pure stochastic variables. Therefore the
(Geometric) Brownian Motion Price Theory - as is commonly
used for stocks and other markets - does not work for electricity.
Instead a much simpler and better descriptive Market Based
Price Forecasting methodology is proposed.

Index Terms—Electricity Prices, Energy Risk Management,
Gaming, (Geometric) Brownian Motion and Jumps.

I. INTRODUCTION

NE of the foundations of commodity price theory are the
papers by Fisher Black & Myron Scholes and Robert

Merton, both in 1973 on option pricing [1,2]. In these papers
they use a closed form solution for the so-called classic
Geometric Brownian Motion stochastic differential equation
(GBM sde) [3] which seems to describe best the behavior of
daily stock market prices.

This basic idea was then taken for the emerging financial and
commodity markets. Even though daily prices of the latter
markets do not seem to be governed by the basic (Geometric)
Brownian Motion stochastic differential equation. This lead to
modifications of which the Mean Reversion process (Ornstein-
Uhlenbeck process) is widely accepted [4]. World financial
and commodity markets have now grown to billions or even
trillions of dollars, traded daily. It can be said that this was
only possible because of the mathematical sophistication to
‘predict’ (spot) market prices [5].

However, many times these models have shown to break down
at tremendous costs but still people keep using them because
having a model is better than having no model at all [6, 7].

With the introduction of electricity markets in the 1990s the
need to model electricity prices arose, as opposed to state
regulation, which had become the norm since the introduction
of large scale electricity production and consumption in the
beginning of the 20th century [8]. Although electrical energy
cannot be stored in large quantities, the well known GBM sde
(now modified to include so-called jumps or spikes) is again
used to describe the pricing process for (spot) electricity. Even
though the cost-of-carry arbitrage argument, which implies
storability of the commodity (a requirement electricity cannot
fulfill on the scale needed [9]), is the main underlying
assumption of Brownian Motion.

II. (GEOMETRIC) BROWNIAN MOTION

(Geometric) Brownian Motion on stock spot prices S(t), has the
following form:

dS(t) = µ.S(t)dt + σ.S(t)dW(t) (Eq. 1)

with: µ the mean and σ the standard deviation (or volatility) of
the spotprice. The time step dt is usually a day and dW(t) is a
stochastic variable (Wiener process) with a standard normal
distribution.

To describe a commodity price path, such as natural gas, Mean
Reversion (Ornstein-Uhlenbeck process) or the tendency to
return to an average spot price has to be included:

dS(t) = α.{µ - ln[S(t)]}.S(t)dt + σ.S(t)dW(t) (Eq. 2)

with: α the Mean Reversion Rate, for some gas markets this
number is around 10 [4], which means that the half-time of a
price move dS away from the mean is around 25 days.

To describe electricity prices, yet another modification of the
(Geometric) Brownian Motion sde is needed; so-called jumps or
spikes:

dS(t) = α.{µ - ln[S(t)]}.S(t)dt + σ.S(t)dW(t) + κ.S(t)dP(t) (Eq. 3)
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with: κ the jump-amplitude and dP(t) the stochastic process
describing the frequency of the jumps (usually a Poisson
process).

As can be seen from fig. 1 for Dutch APX 2001 Day-Ahead
Market (DAM) Prices in Eur/MWh, the jump-regime is to a
large extent governing the price path. For a description of the
Dutch APX DAM please refer to the appendix.

Dutch APX prices January 2001
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Fig. 1 Dutch APX DAM Price January 2001

Because of the jumps, modified closed form solutions for
equations 1 and 2 - as are frequently used [7] - are not suited
for electricity markets and apart from theoretical progress to
(partly) analytically solve equation 3 [10], numerical solutions
provide the best answers.

All solutions of equation 3 require an estimation of the mean
µ, volatility σ, Mean Reversion Rate α and jump
characteristics κ and dP. Although µ can usually be observed
from the market in form of forward prices, the σ, α, κ and dP
are not easily observable and their (least-squares) historical
estimations, such as Recursive Filtration [4], are greatly
influenced by jumps.

III. MEDIAN ABSOLUTE DEVIATION

The main problem with linear regression or least-squares
estimation, as are almost solely used to analyze historical price
(returns) series to find σ and α, is their sensitivity to outliers.

Estimators like the mean and the variance are highly influenced
by outliers because of what is called their very low finite sample
breakdown point (BP), i.e. the smallest proportion of
observations in a (time) series that can result in the sample mean
being arbitrarily large or small. As an example consider the
series {X} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 50}. The estimator for the
population mean is the sample mean µs = 10.4 and the sample
standard deviation amounts to s = 14.15.

If we declare outliers by the rule: |X - µs| > 2s, we see that 50 is
an outlier. However, if we change the number 10 also to 50, the
series suddenly contains no outliers. If we increase those two 50s
to 100 or even 1000 still both would not be flagged as outliers!
This is because the breakdown point for the mean of a series
with n observations is 1/n; one observation can change the
sample mean to a number anywhere between -∞ and +∞.

A much better way to declare outliers is by using the median: M
[11]. Using the Median Absolute Deviation or MAD statistic, to
find outliers according to the rule: | X – M | > 2.(MAD/0.6745),
produces much better results. This is because the finite sample
breakdown point of the median is 0.5, i.e. 50% of observations
have to be changed to alter the median. The MAD is defined as
the median of the series: |X1-M|, |X2-M|, |X3-M|, … , |Xn-M|.
Using this method we immediately recognize the two 50s, 100s
or 1000s as outliers and discard them from further analysis.

Price series must have quotes for each moment in time. An
MAD filtered price series can be made to agree with this
requirement by replacing the outlier (or jump) by its border
value: M ± 2.(MAD/0.6745). This creates a price series, which
is best described as lognormally distributed (see fig. 7 & 8).

IV. REGIMES IN ELECTRICITY PRICES

Because of the nature of electro-magnetic waves, electricity
cannot be stored in large quantities. Consequently supply and
demand must be in balance every moment in time. Therefore the
(spot) market electricity prices follow the expected demand.

For each daily load cycle at first the generation capacity with the
lowest quoted price (usually based on the marginal costs) is
dispatched. When the demand rises - during the (early) morning
hours - more expensive capacity is put online. When the demand
declines again - during the late afternoon and evening hours - the
more expensive peaking units are put out of service directly
followed by the mid-range units.
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Fig. 2 Stylized generation bidding ladder

This standard pattern repeats itself every day (fig. 2) only to be
disrupted by unexpected situations such as a tie-line
(interconnector) outage or tripping of a large generator or – as
happens in (emerging) free markets – by rumors. In these cases
(very) expensive peaking units have to be started and put online
to keep the physical balance. The price of these units is much
higher when compared to the more frequently used units and,
because the situation allows so, gaming starts to be a significant
factor.

Two market regimes or states can be distinguished:
1. the normal or equilibrium regime: the daily load cycle and

generation capacity develop as expected;
2. the abnormal or non-equilibrium regime: a situation in which

- if nothing would be done - an imbalance (usually a
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generation shortage) can occur and strong price impulses
have to be given to stimulate the market participants to
make the necessary moves.

Regimes are not specific to the Dutch market but have been
recognized before, e.g. the Californian market [12]. In fact,
regimes have been incorporated in Brownian Motion models by
so-called Markov regime switching, i.e. there is a certain
probability that the price solution space switches from one state
to the next [13].

V. ANALYSIS OF DEMAND

Since demand – in relation to available generation capacity -
drives the (spot) market electricity price, an analysis of national
or market load characteristics - especially seasonality - is
required. When we consider the Dutch national load in 2001, fig.
3 and 4, we can observe that the load or demand characteristics
on working days (day 1 to 5) are similar. The behavior on
Saturdays (day 6) starts to deviate, whereas Sundays (day 7) are
consistently different. So we can recognize both a daily (each
hour in a day) seasonality and a weekly (each day in a week)
seasonality.

Daily average Dutch demand 2001
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Fig. 3 Average daily Dutch demand 2001

Volatility of daily load
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Fig. 4 Standard deviation daily Dutch demand 2001

VI. ANALYSIS OF DUTCH APX PRICES 2001

On the Dutch APX market mainly two different products, on-
peak blocks (weekdays 07:00–23:00h) and off-peak blocks
(weekdays 23:00–07:00h plus weekends), are traded.

Analysis of the APX price series of 2001 by means of the MAD
filtration methodology, as discussed in section III, shows that the

underlying equilibrium regime has prices varying roughly
between 15 and 55 Eur/MWh for on-peak and between 10 and
25 Eur/MWh for early morning off-peak hours (see fig. 5 & 6).

On-Peak Mean and StDev

0.00

10.00

20.00

30.00

40.00

50.00

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

hour

E
u

r/
M

W
h

On-Peak: Mean On-Peak: StDev

Fig. 5 On-peak prices (equilibrium regime)
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Fig. 6 Off-peak prices (equilibrium regime)

From fig. 5 and 6 we see that filtered APX prices neatly follow
the average demand curves as shown in fig. 3. Note that for
off-peak hours (23:00-07:00) the price follows the Saturday
and Sunday demand curves (day 6 & 7). Because of this
similarity we apply a regression analysis between a normalized
national load profile (2001) and a normalized MAD-filtered
APX price series (2001) for the on-peak and off-peak price-
bands. For reasons of similarity we will treat Saturday as a
weekday. The normalization is performed by dividing each
hourly load or price by the daily average. The resulting MAD-
filtered price histograms are shown in fig. 7 & 8.
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Fig. 7 Normalized on-peak price histogram
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Fig. 8 Normalized off-peak price histogram

These histograms clearly show that the usual ‘fat tails’ [4] in
electricity price probability density functions (pdf’s), as
compared to the lognormal pdf, have been removed and that
the remaining price series resemble the lognormal.

Analysis of the market-equilibrium regimes in fig. 9 and 10
shows that third order polynomials, for each of the price-
bands, give rather high coefficients of determination: R2-On =

0.72 and R2-Off = 0.69. Other relationships, e.g. linear, power
or exponential, resulted in lower coefficients of determination.

On-Peak Price versus Load
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Fig. 9 On-peak price versus the normalized load

Off-Peak versus Load

R2 = 0,6902

0
0,5

1
1,5

2

0 0,5 1 1,5 2 2,5

normalized Load

n
o

rm
ed

P
ri

ce

Fig. 10 Off-peak price versus the normalized load

A comparison of the equilibrium regimes of fig. 9 & 10 with
the stylized bidding ladder in fig. 2 clearly shows that the
MAD filtering captures the fundamentals of an electricity
market. As expected the on-peak price has a tendency to
increase with the load, whereas the off-peak price does quite
the opposite for the upper range of the loads; overall the off-
peak curve is rather flat. The horizontal leveling or even slight
drop-off of the on-peak prices at lower loads and the
horizontal leveling of the off-peak prices at the higher loads
(Sunday evenings mostly) can both be explained by a must-run
base capacity.

MAD filtration with x.(MAD/0.6745), in which x = 2, was
used to make the division into an equilibrium and a non-
equilibrium regime. Taking smaller multiples (x < 2) of the
‘standard’ deviation of the time series, i.e. (MAD/0.6745), did
not produce much higher coefficients of determination (R2).
For higher multiples (x > 2.5) the on-peak and off-peak
regressions start to decrease significantly.

We define jumps or spikes in the APX market as outliers
found by the MAD filtration with x = 2. If we define four
price-bands - weekday on-peak, weekday off-peak, Saturday
and Sunday - it turns out that x = 1.5 gives the best fit for 3rd

order polynomials with R2 = 0.71; R2 = 0.70; R2 = 0.73 and

R2 = 0.71 respectively.

Analysis of the non-equilibrium regime, in tables 1 & 2 and
fig. 11 through 14, shows that unexpected situations occur
quite frequently. However, the frequency of known real
problems with tie lines and/or generation capacity is much
lower than the frequency of the jumps. This implies that
gaming plays a significant role, as was analyzed through
realistic market simulation for the Dutch power market [14].
Note that gaming is loosely defined as a non-equilibrium price
level without a physical cause.

Table 1. Frequencies of jumps in the year 2001 APX prices.

Table 2. Amplitude characteristics of the APX 2001 jumps.

Monday: Probability of Spikes

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000

1 4 7 10 13 16 19 22

Hour

P
ro

b
ab

ili
ty

Down
No Spike

Up

Fig. 11 Probability of jumps on Monday

Up Down No Spike Hours
On-Peak 14,0% 0,2% 85,8% 4880
Off-Peak 9,2% 8,3% 82,4% 3880
Total 11,9% 3,8% 84,3% 8760

µµµµ-Mean Up Down No Spike
On-Peak 140,43 2,76 29,91 Eur/MWh
Off-Peak 38,59 3,09 17,84 Eur/MWh

σσσσ-StDev Up Down No Spike
On-Peak 163,40 3,01 8,79 Eur/MWh
Off-Peak 25,02 3,00 4,00 Eur/MWh
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Friday: Probability of Spikes
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Fig. 12 Probability of jumps on Friday

Saturday: Prob. of Spikes
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Fig. 13 Probability of jumps on Saturday

Sunday: Prob. of Spikes
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Fig. 14 Probability of jumps on Sunday

Note that Tuesdays through Thursdays are very similar to
Fridays and are therefore not shown. From the figures we
observe that gaming occurs at hours at which an overcapacity
can be expected. Most notably at noon on weekdays (small)
jumps occur with probabilities over 50%.

From fig. 11 it can be seen that Mondays have some potential
for off-peak downward jumps in the early morning hours; this
is not necessarily due to gaming, because of the APX block-
bidding functionality (see appendix). On Sundays (fig. 14)
downward jumps - prices drop to zero - are more or less the
norm; in the Over The Counter (OTC) market, even negative
prices can occur. Saturdays and Sundays are different from
weekdays. On Saturdays jumps occur much less frequent. On
Sundays the pattern is totally different with quite a high
probability for upward jumps in the evening hours and a high
propensity for downward jumps in the early morning hours.

When we compare these results with the average and volatility
analysis of the total Dutch demand (national load) (fig. 3 & 4)
most of this behavior can be explained.

The rise to (very) high probability levels for upward jumps
during the morning ramp-up (see fig. 3) can be explained from
the fact that a generation shortage can easily occur. This would
immediately cause a physical unbalance and therefore market
unbalances with proportionate costs. The much lower level of
jumps on Saturdays can be explained from the fact that the
load levels are well below those of weekdays - even though the
volatility is higher - and therefore people do not get nervous so
easily. Another aspect might be that many traderooms are
simply closed or sparsely populated. On Sundays must-run
capacity most certainly causes the many downward jumps
during the early morning hours. The general rise of the load
towards to the overall daily peak in the evening will, in
combination with genco’s having the possibility to start up
(more) mid-range capacity, cause the many upward jumps
during those hours.

The MAD analysis of the APX 2001 prices has been compared
with an MAD analysis of the APX 2000 prices. In both years
the frequency of upward jumps is comparable. Downward
jumps did not occur in the year 2000 at all (Table 3).
Regression analysis of the year 2000 normalized prices against
the normalized load gives a low coefficient of determination
for all functional relationships (R2 between 0.3 and 0.4). This
was caused by the so-called ‘protocol’ (i.e. a price agreement
between genco’s and disco’s) causing the APX market in the
year 2000 to be very thin. It was tried to game the market for
its upward potential, but bidding was still very immature and
not strongly related to demand.

Up Down No Spike Hours
On-Peak 12.1% 0.0% 87.9% 4860
Off-Peak 9.2% 0.0% 90.8% 3900
Total 10.8% 0.0% 89.2% 8760

Table 3. Frequencies of jumps in the year 2000 APX prices.

VII. NEW WAYS OF MODELLING.

Next to (partly) analytical solutions to capture the specifics of
jumps in (electricity) prices [10], a lot of effort is put in
numerical or Monte Carlo solutions [15] of equation 3. The
problem of historical estimates for the volatility σ, the mean
reversion rate α and the characteristics of the jumps (κ and
dP), to simulate possible price paths can be solved easily with
the MAD filtering methodology.

The use of the mean reversion rate α to bring back a jump to
normal price levels - as is standard practice - does not reflect
the electricity price behavior very well (see also section VI). It
is better to interpret α as the tendency of prices to return to an
average price level during the non-jump regime and to
consider the jumps as a separate process to be modeled by e.g.
Markov switching [13]. This gives consistently better results
and can be further improved if σ, α, κ and dP are determined
after an MAD filtration.

Another approach is to describe the - to a large extent -
deterministic aspects of the market by means of the



6

relationships between the (national) load and the prices as
determined for the equilibrium regime. The jumps can be
added as a well-controlled stochastic process. Mathematically
this Market Based Price Forecast (MBPF) looks like:

Si(t) = Fwi.{gi[µL(t) + σL(t).dp] + Ji(t).dq} (Eq. 4)

With; Si(t): the (spot) price for the different price-bands i, Fwi:

the forward for that period and price-band, gi: the found
functional relationship between price and load per price-band,
µL(t): the average (predicted) load for the day at time t, σL(t):

the volatility of the load, dp: a stochastic variable N(0,σg) [σg:

accuracy of the load-relation], Ji(t): jump amplitudes as found
with the MAD filtering, and dq: a stochastic variable to
describe the frequency of the jumps as found with the MAD
filtering. Tuning the MBPF methodology is much more simple
and intuitive than tuning equation 3, because the parameters of
equation 4 are easily found by means of the MAD filtration
and intuitively verifiable by traders. Because of the
deterministic link to demand every fundamental aspect of the
market [16], like all kinds of seasonality, is automatically
included. Furthermore stochastic jumps can be included as
they occurred in the past or perceived to occur in the future.
This ensures a correct modeling of the gaming potential of the
market.

When equation 4 is applied to generate price paths in order to
determine simple call and put option premiums and the results
are compared with those found by Monte Carlo simulation of
the modified Brownian Motion model (equation 3), it appears
that the proposed method produces very realistic price paths
and equally good, but better understandable, option premiums.

However - as every model description of economic behavior -
the new model does not provide the ultimate answer [17] but
provides a better insight into the electricity prices.
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X. APPENDIX

Bilateral or Over The Counter (OTC) trade accounts for the
largest volume in electricity trading in the Netherlands.
Besides bilateral trade, trading can be done on three organized
markets:
- Day-Ahead Market (APX DAM);
- Adjustment Market (APX); and
- Regulating Power Market.

The Amsterdam Power Exchange (APX) started its operation
in May 1999 with a Day Ahead Market (DAM) for electricity.
The DAM is based on a two-sided auction model and offers
hourly contracts, one day ahead of delivery. A price cap of
1600 €/MWh is used in the DAM. The APX DAM has a
block-bidding functionality: participants can offer a certain
volume (MW) for a block of hours (e.g. 10 hours) at a certain
price (e.g. their variable costs). APX DAM will now match the
block bid if the average market clearing price (MCP) over the
10 hours is above the offered price. If so, the block bid will be
in the matching results for all 10 hours, even if in one (or
some) hour(s) the MCP is below the offered price. APX DAM
applies a matching for each individual hour and incorporates
the block volume at the minimum price (0.01 Eur/MWh).

An adjustment market opened in February 2001. This
adjustment market is based on continuous trade and offers
market participants the possibility to avoid unexpected
imbalances. This market closes a few hours before actual
delivery. Market participants can place offers and bids from
their portfolio of power plants and contracts and are therefore
not directly related to single power plants. There is no central
scheduling and dispatch of power plants by a market or System
Operator. Before 2001, market prices were dominated by the
so-called ‘protocol’, a framework contract between the four
Dutch genco’s and the disco’s.
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The number of APX participants currently amounts to 36. The
total traded volume at the APX DAM was 8.24 TWh in 2001
(and 4.62 TWh in 2000). This accounts for about 9% of the
total consumption in the Netherlands. Import plays an
important factor and has almost doubled to 20 TWh per year
since the opening of the market.

Since January 2001, TenneT (the Dutch Transmission System
Operator) operates a regulating power market. TenneT uses
this market during real-time operation to counteract
imbalances between generation and demand for the Dutch
system as a whole. The resulting clearing price is used to settle
all actual imbalances per individual market party.
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